Evidence indicates that oxidative stress contributes to neuronal cell death in Alzheimer's disease (AD). Increased oxidative DNA damage l, as measured with 8-oxoguanine (8-oxoG), and reduced capacity of proteins responsible for removing of DNA damage, including 8-oxoguanine DNA glycosylase 1 (OGG1), were detected in brains of AD patients. In the present study we assessed peripheral blood biomarkers of oxidative DNA damage, i.e. 8- oxoG and OGG1, in AD diagnosis, by comparing their levels between the patients and the controls. Our study was performed on DNA and serum isolated from peripheral blood taken from 100 AD patients and 110 controls. For 8-oxoG ELISA was employed. The OGG1 level was determined using ELISA and Western blot technique. Levels of 8-oxoG were significantly higher in DNA of AD patients. Both ELISA and Western blot showed decreased levels of OGG1 in serum of AD patients. Our results show that oxidative DNA damage biomarkers detected in peripheral tissue could reflect the changes occurring in the brain of patients with AD. These results also suggest that peripheral blood samples may be useful to measure oxidative stress biomarkers in AD.
Keywords: 7,8-dihydrodeoxyguanosine (8-oxoG); 8-oxoguanine DNA glycosylase 1 (OGG1); Alzheimer's disease; DNA base excision repair; Oxidative DNA damage; Oxidative stress.
Copyright © 2016 Elsevier B.V. All rights reserved.