Insertion sequences (ISs) are widespread in the genome of Mycoplasma bovis strain PG45, but no ISs were identified within its two tandemly positioned rRNA operons (rrn1 and rrn2). However, characterization of the rrn locus in 70 M. bovis isolates revealed the presence of ISs related to the ISMbov1 (IS30 family) and ISMbov4 (IS4 family) isomers in 35 isolates. ISs were inserted into intergenic region 1 (IGR-1) or IGR-3, which are the putative promoter regions of rrn1 and rrn2, respectively, and into IGR-5, located downstream of the rrl2 gene. Seven different configurations (A to G) of the rrn locus with respect to ISs were identified, including those in five annotated genomes. The transcriptional start site for the single rrn operon in M. bovis strain 88127 was mapped within IGR-1, 60 bp upstream of the rrs gene. Notably, only 1 nucleotide separated the direct repeat (DR) for ISMbov1 and the promoter -35 element in configuration D, while in configuration F, the -35 motif was a part of the ISMbov1 DR. Relative quantitative real-time (qRT) PCR analysis and growth rate comparisons detected a significant increase (P < 0.05) in the expression of the rrs genes and in the number of viable cells during log phase growth (8, 12, and 16 h) in the strains with configuration F in comparison to strains with one or two rrn operons that did not have ISs. A high prevalence of IS elements within or close to the M. bovis rrn operon-promoter region may reflect their important role in regulation of both ribosome synthesis and function.
Importance: Data presented in this study show a high prevalence of diverse ISs within the M. bovis rrn locus resulting in intraspecies variability and diversity. Such abundance of IS elements near or within the rrn locus may offer a selective advantage to M. bovis Moreover, the fact that expression of the rrs genes as well as the number of viable cells increased in the group of strains with IS element insertion within a putative promoter -35 sequence (configuration F) in comparison to that in strains with one or two rrn operons that do not have ISs may serve as a basis for understanding the possible role of M. bovis IS elements in fundamental biological processes such as regulation of ribosome synthesis and function.
Copyright © 2016, American Society for Microbiology. All Rights Reserved.