The combination of high strength, light weight, and natural biodegradability renders magnesium (Mg)-based alloys promising in orthopedic implants and cardiovascular stents. Being metallic materials, Mg and Mg alloys made for scaffolds provide the necessary mechanical support for tissue healing and cell growth in the early stage, while natural degradation and reabsorption by surrounding tissues in the later stage make an unnecessarily follow-up removal surgery. However, uncontrolled degradation may collapse the scaffolds resulting in premature implant failure, and there has been much research in controlling the degradation rates of Mg alloys. This paper reviews recent progress in the design of novel Mg alloys, surface modification and corrosion mechanisms under different conditions, and describes the effects of the structure, composition, and surface conditions on the degradation behavior in vitro and in vivo.
Statement of significance: Owing to their unique mechanical properties, biodegradability, biocompatibility, Mg based biomaterials are becoming the most promising substitutes for tissue regeneration for impaired bone, vascular and other tissues because these scaffolds can provide not only ideal space for the growth and differentiation of seeded cells but also enough strength before the formation of normal tissues. The most important is that these scaffolds can be fully degraded after tissue regeneration, which can satisfy the increasing demand for better biomedical devices and functional tissue engineering biomaterials in the world. However, the rapid degradation rate of these scaffolds restricts the wide application in clinic. This paper reviews recent progress on how to control the degrdation rate based on the relevant corrosion mechanisms through the design of porous structure, phase structure, grains, and amorphous structure as well as surface modification, which will be beneficial to the better understanding and functional design of Mg-based scaffolds for wide clinical applications in tissue reconstruction in near futures.
Keywords: Biodegradability; Corrosion; Implants; Magnesium alloys; Surface modification.
Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.