Glioma is a malignant tumor that affects all kinds of people all over the world. It demonstrates remarkable infiltrative and invasive features. The high expression of interleukin-13 receptor subunit alpha-2 (IL-13Rα2) reportedly plays a pivotal role in some cancers. However, whether IL-13Rα2 contributes to glioma remains unknown. This study demonstrates that IL-13Rα2 is significantly up-regulated in human glioma tissue samples. It is also associated with late stages of disease progression and diminished survival in glioma patients. Gain- and loss-of-function studies demonstrate that IL-13Rα2 promotes the growth, migration, and invasion of glioma cells. In addition, mechanistic investigations show that IL-13Rα2 activates Scr, phosphatidylinositol 3 kinase (PI3K), Akt, and mTOR. Also, restraining Scr in glioma cells attenuates the activation of Scr/PI3K/Akt/mTOR pathway by IL-13Rα2, whereas the silencing of Scr markedly rescues the pro-invasive effect of IL-13Rα2. In conclusion, our results suggest that the high expression of IL-13Rα2 is significantly associated with the growth and metastasis of human glioma cells via the Scr/PI3K/Akt/mTOR pathway, while IL-13Rα2 may be a potential therapeutic target for glioma treatment.
Keywords: Glioma; IL-13Rα2; Invasion; Scr.