Radiotherapy is generally applied in the treatment of esophageal squamous cell carcinoma (ESCC). However, the radioresistance of ESCC still remains an obstacle for the curative effect of this treatment. We hypothesized that diisopropylamine dichloroacetate (DADA), an inhibitor of pyruvate dehydrogenase kinase (PDK), might enhance radiosensitizationin resistant ESCC. The clonogenic survival assay revealed that DADA sensitized ESCC cells to radiotherapy in vitro; furthermore, the combination of DADA and radiotherapy increased the expression of γ-H2AX, which is a hallmark of DNA double-strand breaks. Arrest at G2/M phase as well as the induction of apoptosis of ESCC cells were also observed in the cells treated with the combination of DADA and radiotherapy. Notably, xenograft tumor growth was significantly suppressed in vivo by combined radiotherapy and DADA administration. It has been proven that glycolysis is highly correlated with radioresistance, which could be reversed by the shift from glycolysis to mitochondrial oxidation. In our present study, we found that DADA could modulate oxidative phosphorylation as well as increase the intracellular levels of reactive oxygen species (ROS). Collectively, we concluded that DADA-induced intracellular ROS accumulation was identified as the key factor of radiotherapy sensitization of ESCC.
Keywords: ROS; diisopropylamine dichloroacetate; esophageal squamous cell carcinoma; radiosensitization.