A highly sensitive, specific and enantioselective assay has been validated for the quantitation of OTX015 enantiomers [(+)-OTX015 and (-)-OTX015] in mice plasma on LC-MS/MS-electrospray ionization as per regulatory guidelines. Protein precipitation was used to extract (±)-OTX015 enantiomers and internal standard (IS) from mice plasma. The active [(-)-OTX015] and inactive [(+)-OTX015] enantiomers were resolved on a Chiralpak-IA column using an isocratic mobile phase (0.2% ammonia/acetonitrile 20 : 80, v/v) at a flow rate of 1.2 mL/min. The total run time was 6.0 min. (+)-OTX015, (-)-OTX015 and IS eluted at 3.34, 4.08 and 4.77 min, respectively. The MS/MS ion transitions monitored were m/z 492 → 383 for OTX015 and m/z 457 → 401 for IS. The standard curves for OTX015 enantiomers were linear (r2 > 0.998) in the concentration range 1.03-1030 ng/mL. The inter- and intraday precisions were in the range 2.20-13.3 and 8.03-12.1% and 3.80-14.4 and 8.97-13.6% for (+)-OTX015 and (-)-OTX015, respectively. Both the enantiomers were found to be stable in a battery of stability studies. This novel method has been applied to the study of stereoselective oral pharmacokinetics of (-)-OTX015 and unequivocally demonstrated that (-)-OTX015 does not undergo chiral inversion to its antipode in vivo in mice.
Keywords: Chiralpak-IA; LC-MS/MS; OTX015; chiral inversion; enantiomers; method validation; mice; mice plasma; pharmacokinetics.
Copyright © 2016 John Wiley & Sons, Ltd.