Storage proteins are the major protein synthesized in the fat body, released into hemolymph and re-sequestered into the fat body before pupation in most insect species. Storage proteins are important amino acid and nutrition resources during the non-feeding pupal period and play essential roles for the metamorphosis and oogenesis of insects. The sequestration of storage protein is a selective, specific receptor-mediated process. However, to date, the potential receptor mediating the sequestration of storage protein has not been determined in Bombyx mori. In this study, we expressed and purified the first ligand binding domain of Bombyx mori vitellogenin receptor (BmVgR), LBD1, and found LBD1 could bind with an unknown protein from the hemolymph of the ultimate silkworm larval instar via pull-down assay. This unknown protein was subsequently identified to be the female-specific storage protein SP1 by mass spectrometry. Furthermore, far western blotting assay, immunoprecipitation and isothermal titration calorimetry analysis demonstrated LBD1 specifically bound with the female-specific SP1, rather than another unisex storage protein SP2. The specific binding of LBD1 with SP1 was dependent on the presence of Ca2+ as it was essential for the proper conformation of LBD1. Deletion mutagenesis and ITC analysis revealed the first and third ligand binding repeats LBR1 and LBR3 were indispensable for the binding of LBD1 with SP1, and LBR2 and LBR4 also had a certain contribution to the specific binding. Our results implied BmVgR may mediate the sequestration of SP1 from hemolymph into the fat body during the larval-pupal transformation of Bombyx mori.