Protein-peptide interactions play an important role in many cellular processes. In silico prediction of protein-peptide complex structure is highly desirable for mechanistic investigation of these processes and for therapeutic design. However, predicting all-atom structures of protein-peptide complexes without any knowledge about the peptide binding site and the bound peptide conformation remains a big challenge. Here, we present a docking-based method for predicting protein-peptide complex structures, referred to as MDockPeP, which starts with the peptide sequence and globally docks the all-atom, flexible peptide onto the protein structure. MDockPeP was tested on the peptiDB benchmarking database using both bound and unbound protein structures. The results show that MDockPeP successfully generated near-native peptide binding modes in 95.0% of the bound docking cases and in 92.2% of the unbound docking cases. The performance is significantly better than other existing docking methods. MDockPeP is computationally efficient and suitable for large-scale applications.
Copyright © 2016 Elsevier Ltd. All rights reserved.