Objective: The aim of this study was to assess time delays between first cerebrovascular symptoms and carotid endarterectomy (CEA) at a single center and to systematically evaluate causes of these delays.
Methods: Consecutive adult patients who underwent CEAs between January 2010 and September 2011 at a single university-affiliated center (Centre Hospitalier de l'Université Montréal-Hôtel-Dieu Hospital, Montreal) were identified from a clinical database and operative records. Covariates of interest were extracted from electronic medical records. Timing and nature of the first cerebrovascular symptoms were also documented. The first medical contact and pathway of referral were also assessed. When possible, the ABCD2 score (age, blood pressure, clinical features, duration of symptoms, and diabetes) was calculated to calculate further risk of stroke. The nonparametric Wilcoxon test was used to assess differences in time intervals between two variables. The Kruskal-Wallis test was used to assess differences in time intervals in comparing more than two variables. A multivariate linear regression analysis was performed using covariates that were determined to be statistically significant in our sensitivity analyses.
Results: The cohort consisted of 111 patients with documented symptomatic carotid stenosis undergoing surgical intervention. Thirty-nine percent of all patients were operated on within 2 weeks from the first cerebrovascular symptoms. The median time between the occurrence of the first neurologic symptom and the CEA procedure was 25 (interquartile range [IQR], 11-85) days. The patient-dependent delay, defined as the median delay between the first neurologic symptom and the first medical contact, was 1 (IQR, 0-14) day. The medical-dependent delay was defined as the time interval between the first medical contact and CEA. This included the delay between the first medical contact and the request for surgery consultation (median, 3 [IQR, 1-10] days). The multivariate regression model demonstrated that the emergency physician as referral source (P = .0002) was statistically significant for reducing CEA delay. Patients who were investigated as an outpatient (P = .02), first medical contact with a general practitioner (P = .0002), and hospital center I as referral center (P = .045) were also found to be statistically significant to extend CEA delay when the model was adjusted over all covariates. In this center, there was no correlation between ABCD2 risk score and waiting time for surgery.
Conclusions: The majority of our cohort falls short of the recommended 2-week interval to perform CEA. Factors contributing to reduced CEA delay were presentation to an emergency department, in-patient investigations, and a stroke center where a vascular surgeon is available.
Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.