Genomic Adequacy from Solid Tumor Core Needle Biopsies of ex Vivo Tissue and in Vivo Lung Masses: Prospective Study

Radiology. 2017 Mar;282(3):903-912. doi: 10.1148/radiol.2016132230. Epub 2016 Oct 18.

Abstract

Purpose To identify the variables and factors that affect the quantity and quality of nucleic acid yields from imaging-guided core needle biopsy. Materials and Methods This study was approved by the institutional review board and compliant with HIPAA. The authors prospectively obtained 232 biopsy specimens from 74 patients (177 ex vivo biopsy samples from surgically resected masses were obtained from 49 patients and 55 in vivo lung biopsy samples from computed tomographic [CT]-guided lung biopsies were obtained from 25 patients) and quantitatively measured DNA and RNA yields with respect to needle gauge, number of needle passes, and percentage of the needle core. RNA quality was also assessed. Significance of correlations among variables was assessed with analysis of variance followed by linear regression. Conditional probabilities were calculated for projected sample yields. Results The total nucleic acid yield increased with an increase in the number of needle passes or a decrease in needle gauge (two-way analysis of variance, P < .0001 for both). However, contrary to calculated differences in volume yields, the effect of needle gauge was markedly greater than the number of passes. For example, the use of an 18-gauge versus a 20-gauge biopsy needle resulted in a 4.8-5.7 times greater yield, whereas a double versus a single pass resulted in a 2.4-2.8 times greater yield for 18- versus 20-gauge needles, respectively. Ninety-eight of 184 samples (53%) had an RNA integrity number of at least 7 (out of a possible score of 10). Conclusion With regard to optimizing nucleic acid yields in CT-guided lung core needle biopsies used for genomic analysis, there should be a preference for using lower gauge needles over higher gauge needles with more passes. ©RSNA, 2016 Online supplemental material is available for this article. An earlier incorrect version of this article appeared online. This article was corrected on October 21, 2016.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Biopsy, Needle
  • Female
  • Genomics*
  • Humans
  • Lung / pathology
  • Lung Neoplasms / pathology*
  • Male
  • Middle Aged
  • Prospective Studies
  • Young Adult