Contribution of garment fit and style to thermal comfort at the lower body

Int J Biometeorol. 2016 Dec;60(12):1995-2004. doi: 10.1007/s00484-016-1258-0. Epub 2016 Oct 18.

Abstract

The heat and mass transfer between the human body and the environment is not only affected by the properties of the fabric, but also by the size of the air gap thickness and the magnitude of the contact area between the body and garment. In this clothing-human-environment system, there is also an interaction between the clothing and the physiological response of the wearer. Therefore, the aim of this study was to evaluate the distribution of the air gap thickness and the contact area for the male lower body in relation to the garment fit and style using a three-dimensional (3D) body scanning method with a manikin. Moreover, their relation with the physiological response of the lower body was analysed using the physiological modelling. The presented study showed that the change in the air gap thickness and the contact area due to garment fit was greater for legs than the pelvis area due to regional differences of the body. Furthermore, the garment style did not have any effect on the core temperature or total water loss of the lower body, whereas the effect of garment fit on the core temperature and total water loss of lower body was observed only for 40 °C of ambient temperature. The skin temperatures were higher for especially loose garments at thigh than the tight garments. Consequently, the results of this study indicated that the comfort level of the human body for a given purpose can be adjusted by selection of fabric type and the design of ease allowances in the garment depending on the body region.

Keywords: 3D body scanning; Air gap thickness; Heat and mass transfer in clothing; Lower body; Thermal comfort.

MeSH terms

  • Air
  • Clothing*
  • Cotton Fiber
  • Hip / physiology
  • Humans
  • Leg / physiology
  • Male
  • Manikins
  • Models, Biological*
  • Pelvis / physiology
  • Polyurethanes
  • Thermosensing*

Substances

  • Polyurethanes