Synthesis, structures, magnetic, and theoretical investigations of layered Co and Ni thiocyanate coordination polymers

Dalton Trans. 2016 Nov 15;45(45):18190-18201. doi: 10.1039/c6dt03752f.

Abstract

Reaction of cobalt(ii) and nickel(ii) thiocyanate with ethylisonicotinate leads to the formation of [M(NCS)2(ethylisonicotinate)2]n with M = Co (2-Co) and M = Ni (2-Ni), which can also be obtained by thermal decomposition of M(NCS)2(ethylisonicotinate)4 (M = Co (1-Co), Ni (1-Ni)). The crystal structure of 2-Ni was determined by single crystal X-ray diffraction. The Ni(ii) cations are octahedrally coordinated by two N and two S bonding thiocyanate anions and two ethylisonicotinate ligands and are linked by pairs of anionic ligands into dimers, that are connected into layers by single thiocyanate bridges. The crystal structure of 2-Co was refined by Rietveld analysis and is isostructural to 2-Ni. For both compounds ferromagnetic ordering is observed at 8.7 K (2-Ni) and at 1.72 K (2-Co), which was also confirmed by specific heat measurements. Similar measurements on [Co(NCS)2(4-acetylpyridine)2]n that exhibits the same layer topology also prove magnetic ordering at 1.33 K. Constrained DFT calculations (CDFT) support the ferromagnetic interactions within the layers. The calculated exchange constants in 2-Ni were used to simulate the susceptibility by quantum Monte Carlo method. The single-ion magnetic anisotropy of the metal ions has been investigated by CASSCF/CASPT2 calculations indicating significant differences between 2-Ni and 2-Co.