Crystals of self complementary DNA hexamers d(CACGTG), d(CCGCGG) and d(GGCGCC) were grown by vapour diffusion technique and studied by microRaman and microIR spectroscopies. The oligonucleotides were studied in parallel in solution by vibrational spectroscopy. A B- greater than Z transition was detected by Raman spectroscopy during the crystallization process for d(CACGTG). Vibrational spectroscopy shows that the d(GGCGCC) crystals adopt a B geometry. On the contrary the d(CCGCGG) sequence which is shown to be able to undergo in solution or in films quite easily the B- greater than Z transition, remains trapped in crystals in a geometry which may correspond to an intermediate conformation often proposed in models of the B- greater than Z transition. The crystals used in this study were characterized by X-ray diffraction. The unit cell and space group have been determined.