T cells in multiple myeloma display features of exhaustion and senescence at the tumor site

J Hematol Oncol. 2016 Nov 3;9(1):116. doi: 10.1186/s13045-016-0345-3.

Abstract

Background: Multiple myeloma is an incurable plasma cell malignancy that is mostly restricted to the bone marrow. Cancer-induced dysfunction of cytotoxic T cells at the tumor site may be responsible for immune evasion and therapeutical failure of immunotherapies. Therefore, enhanced knowledge about the actual status of T cells in myeloma bone marrow is urgently needed. Here, we assessed the expression of inhibitory molecules PD-1, CTLA-4, 2B4, CD160, senescence marker CD57, and CD28 on T cells of naive and treated myeloma patients in the bone marrow and peripheral blood and collected data on T cell subset distribution in both compartments. In addition, T cell function concerning proliferation and expression of T-bet, IL-2, IFNγ, and CD107a was investigated after in vitro stimulation by CD3/CD28. Finally, data was compared to healthy, age-matched donor T cells from both compartments.

Methods: Multicolor flow cytometry was utilized for the analyses of surface molecules, intracellular staining of cytokines was also performed by flow cytometry, and proliferation was assessed by 3H-thymidine incorporation. Statistical analyses were performed utilizing unpaired T test and Mann-Whitney U test.

Results: We observed enhanced T cell exhaustion and senescence especially at the tumor site. CD8+ T cells expressed several molecules associated with T cell exhaustion (PD-1, CTLA-4, 2B4, CD160) and T cell senescence (CD57, lack of CD28). This phenotype was associated with lower proliferative capacity and impaired function. Despite a high expression of the transcription factor T-bet, CD8+ T cells from the tumor site failed to produce IFNγ after CD3/CD28 in vitro restimulation and displayed a reduced ability to degranulate in response to T cell stimuli. Notably, the percentage of senescent CD57+CD28- CD8+ T cells was significantly lower in treated myeloma patients when compared to untreated patients.

Conclusions: T cells from the bone marrow of myeloma patients were more severely impaired than peripheral T cells. While our data suggest that terminally differentiated cells are preferentially deleted by therapy, immune-checkpoint molecules were still present on T cells supporting the potential of checkpoint inhibitors to reactivate T cells in myeloma patients in combination therapies. However, additional avenues to restore anti-myeloma T cell responses are urgently needed.

Keywords: Bone marrow; Immune-checkpoint molecules; Multiple myeloma; T cell exhaustion; T cell senescence.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Blood Cells
  • Bone Marrow Cells
  • CD8-Positive T-Lymphocytes / pathology
  • Case-Control Studies
  • Cell Proliferation
  • Cellular Senescence
  • Female
  • Humans
  • Immunophenotyping
  • Lymphocyte Activation
  • Male
  • Middle Aged
  • Multiple Myeloma / pathology*
  • T-Lymphocyte Subsets / immunology
  • T-Lymphocyte Subsets / pathology
  • T-Lymphocytes, Cytotoxic / pathology