Purpose: Differentiating glioblastoma from brain metastases is important for therapy planning. Diffusion tensor imaging (DTI) was described as a promising tool, however with conflicting results.
Aim: of this study was to analyze the clinical utility of DTI for the differentiation of brain metastases and glioblastoma.
Methods: 294 patients (165 glioblastoma, 129 brain metastases) with preoperative DTI were included in this retrospective study. Fractional anisotropy (FA) was measured via regions of interest (ROIs) in the contrast-enhancing tumor, the necrosis and the FLAIR-hyperintense non-enhancing peritumoral region (NEPTR). Two neuroradiologists classified patient cases as glioblastoma or brain metastases without and with knowledge of FA values.
Results: Glioblastoma showed significantly higher FAcontrast (median glioblastoma=0.33, metastases=0.23; P<0.001) whereas no significant difference was observed for FANEPTR (0.21 vs. 0.22; P=0.28) and for FAnecrosis (0.17 vs. 0.18, P=0.37). FA improved diagnostic accuracy of the neuroradiologists significantly from an AUC of 0.84/0.85 (Reader1/Reader2) to 0.89/0.92.
Conclusions: Glioblastoma show significantly higher FA values in the contrast enhancing tumor part than brain metastases. Implementation of a ROI-based measurement of FA values and FA color maps in clinical routine helps to differentiate between glioblastoma and brain metastases.
Keywords: Brain metastases; Diffusion tensor imaging; Fractional anisotropy; Glioblastoma.
Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.