Due to the high cost of sequencing-based genomics assays such as ChIP-seq and DNase-seq, the epigenomic characterization of a cell type is typically carried out using a small panel of assay types. Deciding a priori which assays to perform is, thus, a critical step in many studies. We present the submodular selection of assays (SSA), a method for choosing a diverse panel of genomic assays that leverages methods from submodular optimization. More generally, this application serves as a model for how submodular optimization can be applied to other discrete problems in biology.
Keywords: Discrete optimization; Genomics assays; Submodularity.