Mucosa-associated microbial populations of the gastrointestinal tract are in intimate contact with the outer mucus layer. This proximity offers these populations a higher potential, than lumenal microbiota, in exerting effects on the host. Functional characteristics of the microbiota and influences of host-physiology shape the composition and activity of the mucosa-associated bacterial community. We have shown previously that inclusion of an artificial sweetener, SUCRAM, included in the diet of weaning piglets modulates the composition of lumenal-residing gut microbiota and reduces weaning-related gastrointestinal disorders. In this study, using Illumina sequencing we characterised the mucosa-associated microbiota along the length of the intestine of piglets, and determined the effect of SUCRAM supplementation on mucosa-associated populations. There were clear distinctions in the composition of mucosa-associated microbiota, between small and large intestine, concordant with differences in regional oxygen distribution and nutrient provision by the host. There were significant differences in the composition of mucosa-associated compared with lumenal microbiota in pig caecum. Dietary supplementation with SUCRAM affected mucosa-associated bacterial community structure along the length of the intestinal tract. Most notably, there was a substantial reduction in predominant Campylobacter populations proposing that SUCRAM supplementation of swine diet has potential for reducing meat contamination and promoting food safety.
© 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.