Cognate interactions between T follicular helper (Tfh) cells and B cells are essential for promoting protective Ab responses. Whereas costimulatory receptors such as ICOS are accepted as being important for the induction of Tfh cell fate decision, other molecules may play key roles in amplifying or maintaining the Tfh phenotype. In this study, with vaccinia virus infection in mice, we show that OX40 was expressed on Tfh cells that accumulated at the T/B borders in the white pulp of the spleen and that OX40-dependent signals directly shaped the magnitude and quality of the their response to viral Ags. OX40 deficiency in Tfh cells profoundly impaired the acquisition of germinal center (GC) B cell phenotype, plasma cell generation, and virus-specific Ab responses. Most significantly, we found that sustained interactions between OX40 and its ligand, OX40L, beyond the time of initial encounter with dendritic cells were required for the persistence of high numbers of Tfh and GC B cells. Interestingly, OX40 was coexpressed with ICOS on Tfh cells in and around the GC, and ICOS-ICOSL interactions were similarly crucial at late times for maintenance of the Tfh and GC B cells. Thus, OX40 and ICOS act in a cooperative, nonredundant manner to maximize and prolong the Tfh response that is generated after acute virus infection.
Copyright © 2016 by The American Association of Immunologists, Inc.