Objectives: Children with brain arteriovenous malformations (bAVMs) are at risk of life-threatening haemorrhage in their early lives. Our aim was to analyse various angioarchitectural features of bAVM to predict the risk of subsequent haemorrhage during follow-up in children.
Methods: We identified all consecutive children admitted to our institution for bAVMs between July 2009 and September 2015. Children with at least 1 month of treatment-free follow-up after diagnosis were included in further analysis. Annual rates of AVM rupture as well as several potential risk factors for subsequent haemorrhage were analysed using Kaplan-Meier analyses and Cox proportional hazards regression models.
Results: We identified 110 paediatric patients with a mean follow-up period of 2.1 years (range, 1 month-15.4 years). The average annual risk of haemorrhage from untreated AVMs was 4.3 % in children. No generalised venous ectasia in conjunction with fast arteriovenous shunt was predictive of subsequent haemorrhage (RR, 7.55; 95 % CI 1.96-29.06). The annual rupture risk was 11.1 % in bAVMs without generalised venous ectasia but with fast arteriovenous shunt.
Conclusions: bAVM angiographic features suggesting unbalanced inflow and outflow might be helpful to identify children at higher risk for future haemorrhage.
Key points: • Haemorrhage risk stratification is important for children with untreated brain AVM. • Angiographic features suggesting unbalanced inflow and outflow predict paediatric brain AVM haemorrhage. • Identifying AVMs with high rupture risk help patient selection and tailoring treatment.
Keywords: Cerebral angiography; Child; Intracranial arteriovenous malformation; Intracranial haemorrhage; Risk assessment.