To compare the efficacy of ultra-high and conventional mono-b-value DWI for glioma grading, in 109 pathologically confirmed glioma patients, ultra-high apparent diffusion coefficient (ADCuh)was calculated using a tri-exponential mode, distributed diffusion coefficients (DDCs) and α values were calculated using a stretched-exponential model, and conventional ADC values were calculated using a mono-exponential model. The efficacy and reliability of parameters for grading gliomas were investigated using receiver operating characteristic (ROC) curve and intra-class correlation (ICC) analyses, respectively. The ADCuh values differed (P < 0.001) between low-grade gliomas (LGGs; 0.436 ×10-3 mm2/sec) and high-grade gliomas (HGGs; 0.285 × 10-3 mm2/sec). DDC, a and various conventional ADC values were smaller in HGGs (all P ≤ 0.001, vs. LGGs). The ADCuh parameter achieved the highest diagnostic efficacy with an area under curve (AUC) of 0.993, 92.9% sensitivity and 98.8% specificity for glioma grading at a cutoff value of 0.362×10-3 mm2/sec. ADCuh measurement appears to be an easy-to-perform technique with good reproducibility (ICC = 0.9391, P < 0.001). The ADCuh value based in a tri-exponential model exhibited greater efficacy and reliability than other DWI parameters, making it a promising technique for glioma grading.
Keywords: MRI; apparent diffusion coefficient; diffusion-weighted imaging; glioma; grading.