Purpose: To develop an in vitro model, the "suspended synovium culture model," to demonstrate the mobilization of mesenchymal stem cells (MSCs) from the synovium into a noncontacted culture dish through culture medium. In addition, to examine which synovium, fibrous synovium or adipose synovium, released more MSCs in the knee with osteoarthritis.
Methods: Human synovial tissue was harvested during total knee arthroplasty from knee joints of 34 patients with osteoarthritis (28 patients: only fibrous synovium, 6 patients: fibrous and adipose synovium). One gram of synovium was suspended with a thread in a bottle containing 40 mL of culture medium and a 3.5-cm-diameter culture dish at the bottom. After 7 days, the culture dish in the bottle was examined. For the cells harvested, multipotentiality and surface epitopes were analyzed. The numbers of colonies derived from fibrous synovium and adipose synovium were also compared.
Results: Colonies of spindle-shaped cells were observed in the culture dish in all 28 donors. Colonies numbered 26 on average, and the cells derived from colony-forming cells had multipotentiality for chondrogenesis, adipogenesis, calcification, and surface epitopes similar to MSCs. The number was colonies was significantly higher in fibrous synovium than in adipose synovium (P < .05, n = 6).
Conclusions: We developed a suspended synovium culture model. Suspended synovium was able to release MSCs into a noncontacted culture dish through medium in a bottle. Fibrous synovium was found to release greater numbers of MSCs than adipose synovium in our culture model. CLINICAL RELEVANCE: This model could be a valuable tool to screen drugs capable of releasing MSCs from the synovium into synovial fluid.
Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.