Multifaceted role of cycling DOF factor 3 (CDF3) in the regulation of flowering time and abiotic stress responses in Arabidopsis

Plant Cell Environ. 2017 May;40(5):748-764. doi: 10.1111/pce.12894. Epub 2017 Feb 24.

Abstract

DNA-binding with one finger (DOF)-type transcription factors are involved in many fundamental processes in higher plants, from responses to light and phytohormones to flowering time and seed maturation, but their relation with abiotic stress tolerance is largely unknown. Here, we identify the roles of CDF3, an Arabidopsis DOF gene in abiotic stress responses and developmental processes like flowering time. CDF3 is highly induced by drought, extreme temperatures and abscisic acid treatment. The CDF3 T-DNA insertion mutant cdf3-1 is much more sensitive to drought and low temperature stress, whereas CDF3 overexpression enhances the tolerance of transgenic plants to drought, cold and osmotic stress and promotes late flowering. Transcriptome analysis revealed that CDF3 regulates a set of genes involved in cellular osmoprotection and oxidative stress, including the stress tolerance transcription factors CBFs, DREB2A and ZAT12, which involve both gigantea-dependent and independent pathways. Consistently, metabolite profiling disclosed that the total amount of some protective metabolites including γ-aminobutyric acid, proline, glutamine and sucrose were higher in CDF3-overexpressing plants. Taken together, these results indicate that CDF3 plays a multifaceted role acting on both flowering time and abiotic stress tolerance, in part by controlling the CBF/DREB2A-CRT/DRE and ZAT10/12 modules.

Keywords: Arabidopsis; CDF; DOF; drought stress; flowering time; gene expression; low temperature stress; nitrogen.

MeSH terms

  • Adaptation, Physiological / genetics
  • Amino Acids / metabolism
  • Arabidopsis / genetics
  • Arabidopsis / physiology*
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism*
  • Cell Nucleus / metabolism
  • Cold Temperature
  • DNA, Plant / metabolism
  • Droughts
  • Flowers / genetics
  • Flowers / physiology*
  • Gene Expression Profiling
  • Gene Expression Regulation, Plant
  • Gene Ontology
  • Genes, Plant
  • Osmotic Pressure
  • Photosynthesis / genetics
  • Principal Component Analysis
  • Protein Binding
  • Stress, Physiological* / genetics
  • Subcellular Fractions / metabolism
  • Sugars / metabolism
  • Time Factors
  • Transcription Factors / genetics
  • Transcription Factors / metabolism*
  • Transcriptional Activation / genetics

Substances

  • Amino Acids
  • Arabidopsis Proteins
  • CDF3 protein, Arabidopsis
  • DNA, Plant
  • Sugars
  • Transcription Factors