Dynamical polarizability, screening and plasmons in one, two and three dimensional massive Dirac systems

J Phys Condens Matter. 2017 Mar 15;29(10):105701. doi: 10.1088/1361-648X/aa57bd. Epub 2017 Jan 9.

Abstract

We study the density-density response function of a collection of charged massive Dirac particles and present analytical expressions for the dynamical polarization function in one, two and three dimensions. The polarization function is then used to find the dispersion of the plasmon modes, and electrostatic screening of Coulomb interactions within the random phase approximation. We find that for massive Dirac systems, the oscillating screened potential (or density) decays as r -2 and r -3 in two and three dimensions respectively, and as r -1 for one dimensional non-interacting systems. However for massless Dirac systems there is no electrostatic screening or Friedel oscillation in one dimension, and the oscillating screened potential decays as r -3 and r -4, in two and three dimensions respectively. Our analytical results for the polarization function will be useful for exploring the physics of massive and massless Dirac electrons in different experimental systems with varying dimensionality.