Mrc1 is a conserved checkpoint mediator protein that transduces the replication stress signal to the downstream effector kinase. The loss of mrc1 checkpoint activity results in the aberrant activation of late/dormant origins in the presence of hydroxyurea. Mrc1 was also suggested to regulate orders of early origin firing in a checkpoint-independent manner, but its mechanism was unknown. Here we identify HBS (Hsk1 bypass segment) on Mrc1. An ΔHBS mutant does not activate late/dormant origin firing in the presence of hydroxyurea but causes the precocious and enhanced activation of weak early-firing origins during normal S-phase progression and bypasses the requirement for Hsk1 for growth. This may be caused by the disruption of intramolecular binding between HBS and NTHBS (N-terminal target of HBS). Hsk1 binds to Mrc1 through HBS and phosphorylates a segment adjacent to NTHBS, disrupting the intramolecular interaction. We propose that Mrc1 exerts a "brake" on initiation (through intramolecular interactions) and that this brake can be released (upon the loss of intramolecular interactions) by either the Hsk1-mediated phosphorylation of Mrc1 or the deletion of HBS (or a phosphomimic mutation of putative Hsk1 target serine/threonine), which can bypass the function of Hsk1 for growth. The brake mechanism may explain the checkpoint-independent regulation of early origin firing in fission yeast.
Keywords: DNA replication timing; Hsk1; Mrc1; intramolecular interaction; replication checkpoint.
Copyright © 2017 American Society for Microbiology.