Urea groups are known to form strong hydrogen bonds with molecules containing atom(s) that can act as hydrogen bond acceptor(s). Thus, urea is a particularly interesting building block for designing receptors for neutral or charged guests. In the quest for new sensors with enhanced performance for the detection of nitro-substituted compounds, two pillared metal-organic frameworks containing urea functional groups were synthesized and structurally characterized. The sensing properties of these frameworks toward nitro-analytes were investigated and compared to each other. The study clearly reveals the importance of urea groups orientation inside the pore cavity of MOFs, as well as the supramolecular interactions between the interpenetrated networks. This work is interesting as it represents the first example of urea-functionalized MOFs for nitro-analytes recognition.