We describe the phenomenon of localization in the epidemic susceptible-infective-susceptible model on highly heterogeneous networks in which strongly connected nodes (hubs) play the role of centers of localization. We find that in this model the localized states below the epidemic threshold are metastable. The longevity and scale of the metastable outbreaks do not show a sharp localization transition; instead there is a smooth crossover from localized to delocalized states as we approach the epidemic threshold from below. Analyzing these long-lasting local outbreaks for a random regular graph with a hub, we show how this localization can be detected from the shape of the distribution of the number of infective nodes.