Tenacious D: Symbiodinium in clade D remain in reef corals at both high and low temperature extremes despite impairment

J Exp Biol. 2017 Apr 1;220(Pt 7):1192-1196. doi: 10.1242/jeb.148239. Epub 2017 Jan 20.

Abstract

Reef corals are sensitive to thermal stress, which induces coral bleaching (the loss of algal symbionts), often leading to coral mortality. However, corals hosting certain symbionts (notably some members of Symbiodinium clade D) resist bleaching when exposed to high temperatures. To determine whether these symbionts are also cold tolerant, we exposed corals hosting either Symbiodinium C3 or D1a to incremental warming (+1°C week-1 to 35°C) and cooling (-1°C week-1 to 15°C), and measured photodamage and symbiont loss. During warming to 33°C, C3 corals were photodamaged and lost >99% of symbionts, while D1a corals experienced photodamage but did not bleach. During cooling, D1a corals suffered more photodamage than C3 corals but still did not bleach, while C3 corals lost 94% of symbionts. These results indicate that photodamage does not always lead to bleaching, suggesting alternate mechanisms exist by which symbionts resist bleaching, and helping explain the persistence of D1a symbionts on recently bleached reefs, with implications for the future of these ecosystems.

Keywords: Coral bleaching; Montastraea cavernosa; Symbiodinium; Symbiosis.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Acclimatization*
  • Animals
  • Anthozoa / physiology*
  • Climate Change*
  • Cold Temperature
  • Coral Reefs*
  • Dinoflagellida / physiology*
  • Hot Temperature
  • Stress, Physiological
  • Symbiosis*