Heart failure often develops after acute myocardial infarction because the injured myocardial tissue fails to recover or regenerate. Stem cell transplantation using adult cell sources, such as adipose-derived stromal vascular fraction (SVF), draws extensive attention. In this study, SVF cells were isolated from rat adipose tissue and cultivated on enzyme-crosslinked gelatin hydrogels. Morphological features of cell development and spontaneous beating behavior from these cells were observed and recorded. Cardiac phenotypes were characterized via immunofluorescence staining, and the expression of cardiac-specific genes was measured via RT-PCR. The functional assessment of SVF-derived cardiomyocyte-like cells (SVF-CMs) was performed by detecting cellular calcium transient activities and pharmacological responses. Results showed that most SVF-CMs exhibited elongated myotubule shapes and expressed cardiac troponin I strongly. SVF-CMs expressed cardiac-specific RNA (including transcription factors GATA binding protein 4) and myocyte enhancer factor 2c, as well as the structural proteins, namely, sarcomere actinin alpha 2, cardiac troponin I type 3, cardiac troponin T type 2, and cardiac gap junction protein alpha 1. Their beating mode, calcium activities, and pharmacological responses were similar to those of native CMs. Spontaneously beating SVF-CMs can be derived from adipose tissue-derived SVFs, and enzyme-crosslinked gelatin hydrogel promoted the cardiac differentiation of SVF cells.