Ki-67 is a nuclear protein that has been used in cancer diagnostic because of its specific cell-cycle dependent expression profile. After quantifying and characterising the expression level of Ki-67, as a function of the cell cycle, we found out that the two main splice variants of the protein (i.e. α and β) are differently regulated in non-cancerous and cancerous cells both at mRNA and protein level. We were able to correlate the presence of the α variant of the protein with the progression through the interphase of cell cycle. We also observed that the different expression profiles correspond to different degradation pathways for non-cancerous and cancerous cells. Furthermore, Ki-67 is continuously regulated and degraded via proteasome system in both cell types, suggesting an active control of the protein. However we also observed a putative extranuclear elimination pathway of Ki-67 where it is transported to the Golgi apparatus. Our evidence in the different expression of the splice variants may represent a milestone for the development of new targets for cancer diagnostic and prognostic. Additionally, the unexpected extranuclear elimination of Ki-67 strongly suggests that this protein must be looked at also outside of the "nuclear box", as thought to date.