Thermal stability of 2DEG at amorphous LaAlO3/crystalline SrTiO3 heterointerfaces

Nano Converg. 2016;3(1):7. doi: 10.1186/s40580-016-0067-9. Epub 2016 Apr 1.

Abstract

At present, the generation of heterostructures with two dimensional electron gas (2DEG) in amorphous LaAlO3 (a-LAO)/SrTiO3 (STO) has been achieved. Herein, we analysed thermal stability of 2DEG at a-LAO/STO interfaces in comparison with 2DEG at crystalline LaAlO3 (c-LAO)/STO interfaces. To create 2DEG at LAO/STO interface, regardless of growing temperature from 25 to 700 °C, we found that environment with oxygen deficient during the deposition of LAO overlayer is essentially required. That indicates that the oxygen-poor condition in the system is more essential than the crystalline nature of LAO layer. 2DEG at a-LAO/STO interface is depleted upon ex situ annealing at 300 °C under 300 Torr of oxygen pressure, while that in c-LAO/STO interface is still maintained. Our result suggests that the LAO overlayer crystallinity critically affects the thermal-annealing-induced depletion of 2DEG at a-LAO/STO interface rather than the generation of 2DEG. We clearly provide that amorphous TiOx can efficiently prevent the thermal degradation of 2DEG at the a-LAO/STO interface, which gives a cornerstone for achieving thermal-stable 2DEG at a-LAO/STO interface.

Keywords: 2-Dimensional electron gas; Interface; Oxide; Thermal stability.