Temozolomide (TMZ), a monofunctional alkylating agent, was selected as a model compound to determine its quantitative genotoxic dose-response relationship in different tissues (blood, liver, and jejunum) and endpoints [Pig-a-, comet-, and micronucleus assay (MNT)] in male rats. TMZ was administered p.o. over 5 consecutive days (day 1-5), followed by a treatment-free period of 50 days (day 6-56) and a final administration prior to necropsy (day 57-59). TMZ showed a dose-dependent increase in DNA damage in all interrogated endpoints. A statistically significant increase in Pig-a mutant phenotypes was observed on day 44 starting at 7.5 mg/kg/day for mutant reticulocytes (for RETCD59-) and at 3.75 mg/kg/day for mutant red blood cells (RBCCD59-), respectively. In addition, a statistically significant increase in cytogenetic damage, as measured by micronucleated reticulocytes, was observed starting at 3.75 mg/kg/day on day 3 and 1.5 mg/kg/day on day 59. DNA strand breaks, as detected by the comet assay, showed a dose-dependent and statistically significant increase in liver, blood, and jejunum starting at doses of 3.75, 3.75, and 7.5 mg/kg/day, respectively. The dose-response relationships of the Pig-a, MNT, and comet data were analyzed for possible points of departure (PoD) using the benchmark-dose (BMD) software PROAST with different critical effect sizes (CES) (BMD0.1, BMD0.5, BMD1, and BMD1SD). Overall, PoD values show a high concordance between different tissues and endpoints, underlining the suitability of this experimental design to explore quantitative dose-response relationships in a variety of different tissues and endpoints, while minimizing animal use.
Keywords: Dose–response relationship; Multiendpoint; Pig-a; Temozolomide.