Suberoyl anilide hydroxamic acid (SAHA) is one of the most promising Histone deacetylases(HDAC) inhibitors which has shown significant anti-tumor activity for many malignancies. We explored the potential mechanism of the radiosensitivity effect of SAHA in Panc-1 cells and attempted to develop SAHA as a systemic treatment strategy for pancreatic cancer. Growth inhibition was detected by CCK-8 assay. Radiosensitizing enhancement ratio was determined by clonogenic assay. The cell cycle and apoptosis assay was detected using flow cytometry and annexin-V/PI. The level of Bax, Bcl-2, Ku70, Ku86, RAD51, RAD54 protein expression were detected using Western blot analysis. Gene silencing was processed by lentiviral vector and qRT-PCR was performed to detect mRNA expression. The results revealed that SAHA inhibited the proliferation of Panc-1 cells. SAHA enhanced the radiosensitivity with a sensitization enhancement ratio(SER) of 1.10 of the Panc-1 cells. SAHA induced G2-M phase arrest and apoptosis of Panc-1 cells with radiation. SAHA upregulated Bax and downregulated Bcl-2, Ku70, Ku86, RAD51, RAD54 protein expression of irradiated Panc-1 cells. SAHA enhanced the radiosensitivity of Panc-1 cells by modulating RAD51 expression. SAHA enhanced radiosensitivity to pancreatic carcinoma Panc-1 cells. It was associated with the G2-M phase arrest and apoptosis via modulation of Bax and Bcl-2 expression. Downregulation of Ku70, Ku86, RAD51 and RAD54 expression caused suppression of HR-mediated DNA repair. SAHA is a good radiosensitizer for pancreatic cancer treatment.
Keywords: Apoptosis; Pancreatic cancer; RAD51; Radiosensitivity.
Copyright © 2017 Elsevier Masson SAS. All rights reserved.