The chemical phosphatase butanedione monoxime (BDM) reversibly inhibited twitches and tetanic contractions in bundles of rat soleus fibres in a dose-dependent manner (2-20 mM) but had no effect on the amplitude or time course of action potentials. In addition, BDM reversibly reduced the amplitude of potassium contractures demonstrating a depressant effect on contraction not mediated by action potentials. BDM had no effect on asymmetric charge movement but depressed calcium currents across the surface membrane in voltage-clamped fibres. The most significant effect of BDM on excitation-contraction coupling was a reduction in the amplitude of the calcium transient associated with contraction in aequorin-injected fibres. While these experiments do not eliminate the possibility of a direct effect of BDM on contractile filaments, reduction of calcium release from the sarcoplasmic reticulum, at least at low concentrations of BDM (below 2 mM), would seem to be the main mechanism for the inhibition of contractions in rat skeletal muscle.