Cervical cancer is considered as a gynecological malignancy accompanied with high rates of mortality across the world. Effective diagnostic, prognostic markers as well as therapeutic targets are necessary to be explored. The p27 and PTEN are known to modulate tumor cell growth and proliferation. However, the molecular mechanisms modulating these genes have not completely been elucidated. In our study, real-time (RT) quantitative PCR indicated that miR‑940 levels were upregulated in human cervical cancer tissue samples and cell lines. Overexpression of miR‑940 could reduce overall survival in patients. Ectopic miR‑940 accelerated cervical cancer cell growth, proliferation and cell cycle arrest in vitro as well as tumor formation in vivo. p27 and PTEN were evidenced as direct targets for miR‑940 and inhibition of p27 and PTEN recovered the suppressive function of miR‑940-silenced cell towards to proliferation and tumorigenicity in cervical cancer cells. In addition, miR‑940 expression was inversely associated with p27 and PTEN expression levels and actively with cyclin D1 in cervical cancer specimens. The results from our study demonstrated that miR‑940 regulated p27 and PTEN post-transcriptionally and might play a significant role in cervical cancer development and progression. Thus, miR‑940 might provide a potential value as therapeutic target for cervical cancer treatment in future.