Microfluidic processing of biological samples typically involves differential manipulations of suspended particles under various force fields in order to spatially fractionate the sample based on a biological property of interest. For the resultant spatial distribution to be used as the assay readout, microfluidic devices are often subjected to microscopic analysis requiring complex instrumentation with higher cost and reduced portability. To address this limitation, we have developed an integrated electronic sensing technology for multiplexed detection of particles at different locations on a microfluidic chip. Our technology, called Microfluidic CODES, combines Resistive Pulse Sensing with Code Division Multiple Access to compress 2D spatial information into a 1D electrical signal. In this paper, we present a practical demonstration of the Microfluidic CODES technology to detect and size cultured cancer cells distributed over multiple microfluidic channels. As validated by the high-speed microscopy, our technology can accurately analyze dense cell populations all electronically without the need for an external instrument. As such, the Microfluidic CODES can potentially enable low-cost integrated lab-on-a-chip devices that are well suited for the point-of-care testing of biological samples.