A Challenging Pie to Splice: Drugging the Spliceosome

Angew Chem Int Ed Engl. 2017 Sep 25;56(40):12052-12063. doi: 10.1002/anie.201701065. Epub 2017 Aug 15.

Abstract

Since its discovery in 1977, the study of alternative RNA splicing has revealed a plethora of mechanisms that had never before been documented in nature. Understanding these transitions and their outcome at the level of the cell and organism has become one of the great frontiers of modern chemical biology. Until 2007, this field remained in the hands of RNA biologists. However, the recent identification of natural product and synthetic modulators of RNA splicing has opened new access to this field, allowing for the first time a chemical-based interrogation of RNA splicing processes. Simultaneously, we have begun to understand the vital importance of splicing in disease, which offers a new platform for molecular discovery and therapy. As with many natural systems, gaining clear mechanistic detail at the molecular level is key towards understanding the operation of any biological machine. This minireview presents recent lessons learned in this emerging field of RNA splicing chemistry and chemical biology.

Keywords: RNA splicing; chemical biology; drug discovery; inhibitors; spliceosome.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Alternative Splicing / drug effects*
  • Biological Products / chemistry
  • Humans
  • Spliceosomes / drug effects*

Substances

  • Biological Products