Multinuclear NMR Study of the Solid Electrolyte Interface Formed in Lithium Metal Batteries

ACS Appl Mater Interfaces. 2017 May 3;9(17):14741-14748. doi: 10.1021/acsami.6b15383. Epub 2017 Apr 18.

Abstract

The composition of the solid electrolyte interphase (SEI) layers formed in Cu|Li cells using lithium bis(fluorosulfonyi)imide (LiFSI) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in 1,2-dimethoxyethane (DME) electrolytes is determined by a multinuclear solid-state MAS NMR study at high magnetic field. It is found that the "dead" metallic Li is largely reduced in the SEI layers formed in a 4 M LiFSI-DME electrolyte system compared with those formed in a 1 M LiFSI-DME electrolyte system. This finding relates directly to the safety of Li metal batteries, as one of the main safety concerns for these batteries is associated with the "dead" metallic Li formed after long-term cycling. It is also found that a large amount of LiF, which exhibits superior mechanical strength and good Li+ ionic conductivity, is observed in the SEI layer formed in the concentrated 4 M LiFSI-DME and 3 M LiTFSI-DME systems but not in the diluted 1 M LiFSI-DME system. Quantitative 6Li MAS NMR results indicate that the SEI associated with the 4 M LiFSI-DME electrolyte is denser than those formed in the 1 M LiFSI-DME and 3 M LiTFSI-DME systems. These studies reveal the fundamental mechanisms behind the excellent electrochemical performance associated with higher concentration LiFSI-DME electrolyte systems.

Keywords: 6Li MAS NMR; Li metal batteries; high concentration electrolytes; high magnetic field; solid electrolyte interphase layer.