Photodynamic therapy (PDT) is a palliative technique that can improve median survival with minimal invasion for cholangiocarcinoma (CC) patients. An ideal photosensitizer (PS) is critical to guarantee the efficacy of PDT. However, conventional PSs have some obvious drawbacks, such as lack of specificity and easy aggregation in aqueous media that limit their further application in the clinic. We herein fully take advantage of a red emissive aggregation-induced emission (AIE) PS to fabricate integrin ανβ3 targeted organic AIE dots for image-guided PDT via a simple and straightforward one-step strategy. The obtained AIE dots exhibit high specificity to CC as well as excellent antitumor effect both in vitro and in vivo. Different from conventional PSs and previously reported PS-loaded nanostructures, the AIE dots do not suffer from aggregation-caused fluorescence quenching and reduction in reactive oxygen species production when the AIE PS molecules are in an aggregated state. The significant antitumor effect, as well as good biocompatibility and negligible toxicity, makes the AIE dots promising for future translational research in CC diagnosis and therapy.
Keywords: aggregation-induced emission; cholangiocarcinoma; photodynamic therapy; targeted fluorescence imaging; targeted therapy.