Preserving wounds from bacterial and fungal infections and retaining optimum moist environment over damaged tissue are major challenges in wound care management. Application of wound dressings with antimicrobial activity and appropriate wound exudates handling ability is of particular significance for promoting wound healing. To this end, preparation and evaluation of novel wound dres1sings made from polyurethane/siloxane network containing graphene oxide (GO) nanoplatelets are described. The particular sol-gel hydrolysis/condensation procedure applied for the preparation of dressings leads to an appropriate distribution of GO nanoplatelets in the dressing membranes. The crosslinked siloxane domains and the presence of GO nanoplatelets within polymeric chains offered necessary mechanical strength for dressings. Meanwhile, a combination of hydrophilic and hydrophobic moieties in dressing backbone enabled suitable wound exudate management. Therefore, both of physical protection from external forces and preservation of moist environment over wound were attained by using the designed dressings. Widespread antimicrobial activity against gram-positive, gram-negative and fungal strains was recorded for the dressing with the optimum amount of GO, meanwhile, very good cytocompatibility against fibroblast cells was noted for these dressings. In vivo assay of the GO containing dressing on rat animal model reveals that the dressing can promote wound healing by complete re-epithelization, enhanced vascularization and collagen deposition on healed tissue.