Ovarian cancer is the most lethal gynecologic malignancy, and cisplatin is one of the first-line chemotherapeutic agents. However, acquired cisplatin resistance prevents the successful treatment of patients with ovarian cancer. Gap junction (GJ) and connexin (Cx) are closely related to tumor formation, but the relationship between cisplatin resistance and GJ or Cx are undetermined. In this study, we established the cisplatin-resistant human ovarian cancer cell line A2780-CDDP. Here we showed that cisplatin resistance was correlated to the loss of GJ and the upregulation of Cx32 expression. Enhancing GJ in A2780-CDDP cells could increase the apoptotic response to cisplatin treatment. Furthermore, although Cx32 expression was increased in A2780-CDDP cells, it was more localized to the cytoplasm rather than in the membrane, and knockdown of Cx32 in A2780-CDDP cells sensitized them to cisplatin treatment. In summary, Cx32 is involved in cisplatin resistance, and cytoplasmic Cx32 plays an important role in chemoresistance.
Keywords: Cisplatin; Cx32; Gap junction; Ovarian cancer; Resistance.
Copyright © 2017 Elsevier Inc. All rights reserved.