Links between DNA methylation and nucleosome occupancy in the human genome

Epigenetics Chromatin. 2017 Apr 11:10:18. doi: 10.1186/s13072-017-0125-5. eCollection 2017.

Abstract

Background: DNA methylation is an epigenetic modification that is enriched in heterochromatin but depleted at active promoters and enhancers. However, the debate on whether or not DNA methylation is a reliable indicator of high nucleosome occupancy has not been settled. For example, the methylation levels of DNA flanking CTCF sites are higher in linker DNA than in nucleosomal DNA, while other studies have shown that the nucleosome core is the preferred site of methylation. In this study, we make progress toward understanding these conflicting phenomena by implementing a bioinformatics approach that combines MNase-seq and NOMe-seq data and by comprehensively profiling DNA methylation and nucleosome occupancy throughout the human genome.

Results: The results demonstrated that increasing methylated CpG density is correlated with nucleosome occupancy in the total genome and within nearly all subgenomic regions. Features with elevated methylated CpG density such as exons, SINE-Alu sequences, H3K36-trimethylated peaks, and methylated CpG islands are among the highest nucleosome occupied elements in the genome, while some of the lowest occupancies are displayed by unmethylated CpG islands and unmethylated transcription factor binding sites. Additionally, outside of CpG islands, the density of CpGs within nucleosomes was shown to be important for the nucleosomal location of DNA methylation with low CpG frequencies favoring linker methylation and high CpG frequencies favoring core particle methylation. Prominent exceptions to the correlations between methylated CpG density and nucleosome occupancy include CpG islands marked by H3K27me3 and CpG-poor heterochromatin marked by H3K9me3, and these modifications, along with DNA methylation, distinguish the major silencing mechanisms of the human epigenome.

Conclusions: Thus, the relationship between DNA methylation and nucleosome occupancy is influenced by the density of methylated CpG dinucleotides and by other epigenomic components in chromatin.

Keywords: CpG; DNA methylation; Epigenetics; MNase-seq; NOMe-seq; Nucleosome.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Binding Sites
  • Cell Line
  • CpG Islands
  • DNA / chemistry
  • DNA / isolation & purification
  • DNA / metabolism
  • DNA Methylation*
  • Databases, Genetic
  • Epigenomics
  • Genome, Human*
  • Histones / metabolism
  • Humans
  • Nucleosomes / metabolism*
  • Sequence Analysis, DNA
  • Transcription Factors / chemistry
  • Transcription Factors / metabolism

Substances

  • Histones
  • Nucleosomes
  • Transcription Factors
  • DNA