Optogenetic tools allow regulation of cellular processes with light, which can be delivered with spatiotemporal resolution. In previous work, we used cryptochrome 2 (CRY2) and CIB1, Arabidopsis proteins that interact upon light illumination, to regulate transcription with light in yeast. While adopting this approach to regulate transcription in mammalian cells, we observed light-dependent redistribution and clearing of CRY2-tethered proteins within the nucleus. The nuclear clearing phenotype was dependent on the presence of a dimerization domain contained within the CRY2-fused transcriptional activators. We used this knowledge to develop two different approaches to regulate cellular protein levels with light: a system using CRY2 and CIB1 to induce protein expression with light through stimulation of transcription, and a system using CRY2 and a LOV-fused degron to simultaneously block transcription and deplete protein levels with light. These tools will allow precise, bi-directional control of gene expression in a variety of cells and model systems.
© The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.