Urinary podocyte-associated mRNA levels correlate with proximal tubule dysfunction in early diabetic nephropathy of type 2 diabetes mellitus

Diabetol Metab Syndr. 2017 May 6:9:31. doi: 10.1186/s13098-017-0228-y. eCollection 2017.

Abstract

Aim: The study assessed mRNA expression of podocyte-associated molecules in urinary sediments of patients with type 2 diabetes mellitus (DM) in relation to urinary podocytes, biomarkers of podocyte injury and of proximal tubule (PT) dysfunction.

Methods: A total of 76 patients with type 2 DM and 20 healthy subjects were enrolled in a cross-sectional study, and assessed concerning urinary podocytes, urinary mRNA of podocyte-associated genes, urinary biomarkers of podocyte damage and of PT dysfunction.

Results: We found significant differences between urinary mRNA of podocyte-associated molecules in relation with albuminuria stage. In multivariable regression analysis, urinary mRNA of nephrin, podocin, alpha-actinin-4, CD2-associated protein, glomerular epithelial protein 1 (GLEPP1), ADAM 10, and NFκB correlated directly with urinary podocytes, albuminuria, urinary alpha1-microglobulin, urinary kidney-injury molecule-1, nephrinuria, urinary vascular endothelial growth factor, urinary advanced glycation end-products (AGE), and indirectly with eGFR (p < 0.0001, R2 = 0.808; p < 0.0001, R2 = 0.825; p < 0.0001, R2 = 0.805; p < 0.0001, R2 = 0.663; p < 0.0001, R2 = 0.726; p < 0.0001, R2 = 0.720; p < 0.0001, R2 = 0.724).

Conclusions: In patients with type 2 DM there is an association between urinary mRNA of podocyte-associated molecules, biomarkers of podocyte damage, and of PT dysfunction. GLEPP1, ADAM10, and NFκB may be considered additional candidate molecules indicative of early diabetic nephropathy. AGE could be involved in this association.

Keywords: Advanced glycation end-products; Early diabetic nephropathy; Proximal tubule; Urinary podocytes; mRNA.