Understanding phospholipid function: Why are there so many lipids?

J Biol Chem. 2017 Jun 30;292(26):10755-10766. doi: 10.1074/jbc.X117.794891. Epub 2017 May 10.

Abstract

In the 1970s, phospholipids were still considered mere building blocks of the membrane lipid bilayer, but the subsequent realization that phospholipids could also serve as second messengers brought new interest to the field. My own passion for the unique amphipathic properties of lipids led me to seek other, non-signaling functions for phospholipids, particularly in their interactions with membrane proteins. This seemed to be the last frontier in protein chemistry and enzymology to be conquered. I was fortunate to find my way to Eugene Kennedy's laboratory, where both membrane proteins and phospholipids were the foci of study, thus providing a jumping-off point for advancing our fundamental understanding of lipid synthesis, membrane protein biosynthesis, phospholipid and membrane protein trafficking, and the cellular roles of phospholipids. After purifying and characterizing enzymes of phospholipid biosynthesis in Escherichia coli and cloning of several of the genes encoding these enzymes in E. coli and Saccharomyces cerevisiae, I was in a position to alter phospholipid composition in a systematic manner during the cell cycle in these microorganisms. My group was able to establish, contrary to common assumption (derived from the fact that membrane proteins retain activity in detergent extracts) that phospholipid environment is a strong determining factor in the function of membrane proteins. We showed that molecular genetic alterations in membrane lipid composition result in many phenotypes, and uncovered direct lipid-protein interactions that govern dynamic structural and functional properties of membrane proteins. Here I present my personal "reflections" on how our understanding of phospholipid functions has evolved.

Keywords: lipid; membrane; membrane lipid; membrane transport; phospholipid.

Publication types

  • Review

MeSH terms

  • Cell Cycle / physiology*
  • Cell Membrane / genetics
  • Cell Membrane / metabolism*
  • Escherichia coli / genetics
  • Escherichia coli / metabolism*
  • Phospholipids / genetics
  • Phospholipids / metabolism*
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae / metabolism*

Substances

  • Phospholipids