Myocardial perfusion pressure: a predictor of 24-hour survival during prolonged cardiac arrest in dogs

Resuscitation. 1988 Oct;16(4):241-50. doi: 10.1016/0300-9572(88)90111-6.

Abstract

Myocardial perfusion pressure, defined as the aortic diastolic pressure minus the right atrial diastolic pressure, correlates with coronary blood flow during cardiopulmonary resuscitation (CPR) and predicts initial resuscitation success. Whether this hemodynamic parameter can predict 24-h survival is not known. We examined the relationship between myocardial perfusion pressure and 24-h survival in 60 dogs that underwent prolonged (20 min) ventricular fibrillation and CPR. Forty-two (70%) animals were initially resuscitated and 20 (33%) survived for 24 h. Myocardial perfusion pressure was significantly greater when measured at 5, 10, 15 and 20 min of ventricular fibrillation in the resuscitated animals than in the non-resuscitated animals (P less than 0.01). Likewise, the myocardial perfusion pressure was also greater in the animals that survived 24 h than in animals that were resuscitated, but died before 24 h (P less than 0.02). Myocardial perfusion pressure measured after 10 min of CPR was 11 +/- 2 mmHg in animals never resuscitated, 20 +/- 3 mmHg in those resuscitated that died before 24 h and 29 +/- 2 mmHg in those that survived 24 h (P less than 0.05). A myocardial perfusion pressure at 10 min of CPR of 20 mmHg or less is an excellent predictor of poor survival (negative predictive value = 96%). Myocardial perfusion pressure is a useful index of CPR effectiveness and therefore may be a useful guide in helping to optimize resuscitation efforts.

MeSH terms

  • Animals
  • Blood Pressure*
  • Coronary Circulation
  • Dogs
  • Heart Arrest / mortality
  • Heart Arrest / physiopathology*
  • Prognosis
  • Resuscitation*
  • Time Factors