The assessment of health risks resulting from the intake of genotoxic carcinogens in food depends essentially on a valid exposure assessment. The reliability of the external exposure estimation is restricted by various factors, e. g. inaccurate data from dietary protocols and variations of food contaminant contents. As an alternative, the individual internal exposure to genotoxic substances may be described by specific biomarkers in different matrices. For example, mercapturic acids formed after glutathione conjugation of electrophilic metabolites can be detected in the urine. This typically reflects the exposure to the parent compound over a period of one to two days. The determination of adducts in the blood proteins serum albumin (SA) and hemoglobin (Hb) allows for conclusions to be drawn about the external exposure within the last three weeks (SA) or within the last four months (Hb). Protein adducts are used routinely in occupational medicine as biomarkers of internal exposure to substances in the ambient air of the workplace. The availability of increasingly sensitive analytical techniques also makes it possible to detect numerous adducts in proteins from human blood samples that are formed after the continuous intake of very small doses of toxic substances from foods. Here, we present the current state of science exemplified by protein adducts of the food contaminants acrylamide, aflatoxin B1 and glycidol. The biomarker can be used in the future to investigate previously unknown relationships between internal exposure and disease incidences.
Keywords: Biomarker; Genotoxic carcinogens; Internal exposure; Mercapturic acids; Protein adducts.