Objectives: To find the catalytic activities of CYP191A1 from Mycobacterium smegmatis, in which functions of most P450s are unknown, by using a set of reductase systems, peroxides, and various substrates including fatty acids and human drugs.
Results: CYP191A1 was functionally expressed in Escherichia coli and purified. Its catalytic activities were examined with fatty acids, chromogenic and fluorogenic substrates, and several human P450 substrates, in the presence of six different types of electron transfer systems, such as rat NADPH-P450 reductase, Candida NADPH-P450 reductase, ferredoxin/ferredoxin reductase, putidaredoxin/putidaredoxin reductase, and peroxides (H2O2 and t-butyl hydroperoxide). The reactions catalyzed by CYP191A1 included the hydroxylation and O-dealkylation of several substrates.
Conclusions: CYP191A1 preferentially catalyzes the peroxide-dependent oxidation of various substrates over the reductase-dependent reaction. Its peroxygenase activity may be used an effective biocatalytic tool to synthesize the metabolites of drugs.
Keywords: CYP191A1; Cytochrome P450; Fatty acid; Human P450 substrate; Peroxide; Peroxygenase activity.