Precisely targeted genome editing is highly desired for clinical applications. However, the widely used homology-directed repair (HDR)-based genome editing strategies remain inefficient for certain in vivo applications. We here demonstrate a microhomology-mediated end-joining (MMEJ)-based strategy for precisely targeted gene integration in transfected neurons and hepatocytes in vivo with efficiencies up to 20%, much higher (up to 10 fold) than HDR-based strategy in adult mouse tissues. As a proof of concept of its therapeutic potential, we demonstrate the efficacy of MMEJ-based strategy in correction of Fah mutation and rescue of Fah-/- liver failure mice, offering an efficient approach for precisely targeted gene therapies.
Keywords: CRISPR/Cas9; Fah(−/−) mice; Gene therapy; In vivo targeted integration; MMEJ.
Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.