Block copolymers can be synthesized in an array of architectures and compositions to yield diverse chemical properties. The triblock copolymer Poloxamer 188 (P188), the family archetype, consisting of a hydrophobic poly(propylene oxide) core flanked by hydrophilic poly(ethylene oxide) chains, can stabilize cellular membranes during stress. However, little is known regarding the molecular basis of membrane interaction by copolymers in living organisms. By leveraging diblock architectural design, discrete end-group chemistry modifications can be tested. Here we show evidence of an anchor and chain mechanism of interaction wherein titrating poly(propylene oxide) block end group hydrophobicity directly dictates membrane interaction and stabilization. These findings, obtained in cells and animals in vivo, together with molecular dynamics simulations, provide new insights into copolymer-membrane interactions and establish the diblock copolymer molecular architecture as a valuable platform to inform copolymer-biological membrane interactions. These results have implications for membrane stabilizers in muscular dystrophy and for other biological applications involving damaged cell membranes.
Keywords: Duchenne muscular dystrophy; block copolymer; materials science; striated muscle.