Cryo-electron tomography (cryo-ET) captures the 3D electron density distribution of macromolecular complexes in close to native state. With the rapid advance of cryo-ET acquisition technologies, it is possible to generate large numbers (>100,000) of subtomograms, each containing a macromolecular complex. Often, these subtomograms represent a heterogeneous sample due to variations in the structure and composition of a complex in situ form or because particles are a mixture of different complexes. In this case subtomograms must be classified. However, classification of large numbers of subtomograms is a time-intensive task and often a limiting bottleneck. This paper introduces an open source software platform, TomoMiner, for large-scale subtomogram classification, template matching, subtomogram averaging, and alignment. Its scalable and robust parallel processing allows efficient classification of tens to hundreds of thousands of subtomograms. In addition, TomoMiner provides a pre-configured TomoMinerCloud computing service permitting users without sufficient computing resources instant access to TomoMiners high-performance features.
Keywords: cloud computing; cryo-electron tomography; distributed computing; fast rotational matching; subtomogram alignment; subtomogram classification.
Copyright © 2017 Elsevier Ltd. All rights reserved.